Nomor 11
lim
\clubsuit \, Pemfaktoran
p^2 - q^2 = (p-q)(p+q)
Sehingga : x - 1 = (\sqrt{x})^2 - 1^2 = (\sqrt{x} - 1)(\sqrt{x}+1)
\clubsuit \, Merasionalkan bentuk akar
\begin{align} & \displaystyle \lim_{ x \to 1 } \frac{(2x-3\sqrt{x} +1 )(\sqrt{x}-1)}{(x-1)^2} \\ & = \displaystyle \lim_{ x \to 1 } \frac{(\sqrt{x}-1)[(2x+1) -3\sqrt{x} ]}{(x-1)(x-1)} . \frac{(2x+1) + 3\sqrt{x}}{(2x+1) + 3\sqrt{x}} \\ & = \displaystyle \lim_{ x \to 1 } \frac{(\sqrt{x}-1)[(2x+1)^2 -(3\sqrt{x}^2 ]}{(\sqrt{x} - 1)(\sqrt{x}+1)(x-1)[(2x+1) + 3\sqrt{x}]} \\ & = \displaystyle \lim_{ x \to 1 } \frac{4x^2 + 4x + 1 - 9x}{(\sqrt{x}+1)(x-1)[(2x+1) + 3\sqrt{x}]} \\ & = \displaystyle \lim_{ x \to 1 } \frac{4x^2 - 5x + 1}{(\sqrt{x}+1)(x-1)[(2x+1) + 3\sqrt{x}]} \\ & = \displaystyle \lim_{ x \to 1 } \frac{(4x-1)(x-1)}{(\sqrt{x}+1)(x-1)[(2x+1) + 3\sqrt{x}]} \\ & = \displaystyle \lim_{ x \to 1 } \frac{(4x-1)}{(\sqrt{x}+1)[(2x+1) + 3\sqrt{x}]} \\ & = \frac{(4.1-1)}{(\sqrt{1}+1)[(2.1+1) + 3\sqrt{1}]} \\ & = \frac{(4-1)}{(2)[2 + 1 + 3]} \\ & = \frac{3}{12} = \frac{1}{4} \end{align}
Jadi, nilai limitnya adalah \frac{1}{4} . \heartsuit
p^2 - q^2 = (p-q)(p+q)
Sehingga : x - 1 = (\sqrt{x})^2 - 1^2 = (\sqrt{x} - 1)(\sqrt{x}+1)
\clubsuit \, Merasionalkan bentuk akar
\begin{align} & \displaystyle \lim_{ x \to 1 } \frac{(2x-3\sqrt{x} +1 )(\sqrt{x}-1)}{(x-1)^2} \\ & = \displaystyle \lim_{ x \to 1 } \frac{(\sqrt{x}-1)[(2x+1) -3\sqrt{x} ]}{(x-1)(x-1)} . \frac{(2x+1) + 3\sqrt{x}}{(2x+1) + 3\sqrt{x}} \\ & = \displaystyle \lim_{ x \to 1 } \frac{(\sqrt{x}-1)[(2x+1)^2 -(3\sqrt{x}^2 ]}{(\sqrt{x} - 1)(\sqrt{x}+1)(x-1)[(2x+1) + 3\sqrt{x}]} \\ & = \displaystyle \lim_{ x \to 1 } \frac{4x^2 + 4x + 1 - 9x}{(\sqrt{x}+1)(x-1)[(2x+1) + 3\sqrt{x}]} \\ & = \displaystyle \lim_{ x \to 1 } \frac{4x^2 - 5x + 1}{(\sqrt{x}+1)(x-1)[(2x+1) + 3\sqrt{x}]} \\ & = \displaystyle \lim_{ x \to 1 } \frac{(4x-1)(x-1)}{(\sqrt{x}+1)(x-1)[(2x+1) + 3\sqrt{x}]} \\ & = \displaystyle \lim_{ x \to 1 } \frac{(4x-1)}{(\sqrt{x}+1)[(2x+1) + 3\sqrt{x}]} \\ & = \frac{(4.1-1)}{(\sqrt{1}+1)[(2.1+1) + 3\sqrt{1}]} \\ & = \frac{(4-1)}{(2)[2 + 1 + 3]} \\ & = \frac{3}{12} = \frac{1}{4} \end{align}
Jadi, nilai limitnya adalah \frac{1}{4} . \heartsuit
Nomor 12
Vektor \vec{u} = 3\vec{i}+4\vec{j}+x\vec{k} \, dan \, \vec{v} = 2\vec{i}+3\vec{j}-6\vec{k}. \,
Jika panjang proyeksi \vec{u} pada \, \vec{v} \, adalah 6, maka x = .....
\spadesuit \, Panjang proyeksi \vec{u} pada \vec{v}
panjang = \frac{\vec{u}.\vec{v}}{|\vec{v}|}
\spadesuit \, mementukan \vec{u}.\vec{v} \, dan |\vec{v}|
\vec{u} = 3\vec{i}+4\vec{j}+x\vec{k} \, dan \, \vec{v} = 2\vec{i}+3\vec{j}-6\vec{k}
\begin{align} \vec{u}.\vec{v} & = 3.2+4.3+x.(-6) = 18 - 6x \\ |\vec{v}| & = \sqrt{2^2 + 3^2 + (-6)^2 } = \sqrt{49} = 7 \end{align}
\spadesuit \, Menentukan nilai x \, dengan panjang proyeksi = 6
\begin{align} \text{panjang} & = \frac{\vec{u}.\vec{v}}{|\vec{v}|} \\ 6 & = \frac{18 - 6x}{7} \, \, \text{(bagi 6)} \\ 1 & = \frac{3 - x}{7} \\ 7 & = 3-x \\ x = -4 \end{align}
Jadi, nilai x = -4. \heartsuit
panjang = \frac{\vec{u}.\vec{v}}{|\vec{v}|}
\spadesuit \, mementukan \vec{u}.\vec{v} \, dan |\vec{v}|
\vec{u} = 3\vec{i}+4\vec{j}+x\vec{k} \, dan \, \vec{v} = 2\vec{i}+3\vec{j}-6\vec{k}
\begin{align} \vec{u}.\vec{v} & = 3.2+4.3+x.(-6) = 18 - 6x \\ |\vec{v}| & = \sqrt{2^2 + 3^2 + (-6)^2 } = \sqrt{49} = 7 \end{align}
\spadesuit \, Menentukan nilai x \, dengan panjang proyeksi = 6
\begin{align} \text{panjang} & = \frac{\vec{u}.\vec{v}}{|\vec{v}|} \\ 6 & = \frac{18 - 6x}{7} \, \, \text{(bagi 6)} \\ 1 & = \frac{3 - x}{7} \\ 7 & = 3-x \\ x = -4 \end{align}
Jadi, nilai x = -4. \heartsuit
Nomor 13
Akan disusun suatu tim peneliti yang terdiri dari 2 orang matematikawan dan 3 orang teknisi. Jika calon yang tersedia 3 orang
matematikawan dan 5 orang teknisi, maka banyak cara menyusun tim tersebut adalah ....
\spadesuit \, Ada 3 orang matematikawan dan 5 orang teknisi, akan dipilih 2 orang matematikawan dan 3
orang teknisi.
\spadesuit \, Pada kasus ini urutan orang tidak diperhatikan sehingga menggunakan kombinasi
Total cara = C_2^3. C_3^5 = 3 . 10 = 30 \, cara
Keterangan :
C_2^3 \, artinya memilih 2 orang dari 3 orang matematikawan
C_3^5 \, artinya memilih 3 orang dari 5 orang teknisi
Jadi, ada 30 cara penyusunan tim. \heartsuit
\spadesuit \, Pada kasus ini urutan orang tidak diperhatikan sehingga menggunakan kombinasi
Total cara = C_2^3. C_3^5 = 3 . 10 = 30 \, cara
Keterangan :
C_2^3 \, artinya memilih 2 orang dari 3 orang matematikawan
C_3^5 \, artinya memilih 3 orang dari 5 orang teknisi
Jadi, ada 30 cara penyusunan tim. \heartsuit
Nomor 14
Jika A, B, dan C matriks 2 \times 2 yang memenuhi
AB = \left( \begin{matrix} 0 & 1 \\ -1 & 0 \end{matrix} \right) \, dan \, CB = \left( \begin{matrix} 1 & 0 \\ 0 & -1 \end{matrix} \right) .
Maka CA^{-1} \, adalah .....
\spadesuit \, Konsep dasar invers
A = \left( \begin{matrix} a & b \\ c & d \end{matrix} \right) \rightarrow A^{-1} = \frac{1}{ad-bc} \left( \begin{matrix} d & -b \\ -c & a \end{matrix} \right)
Sifat - sifat pada matriks :
A.A^{-1} = A^{-1} . A = I
A.I = I.A = A
(AB)^{-1} = B^{-1}. A^{-1}
\spadesuit \, inverskan bentuk AB
\begin{align} AB & = \left( \begin{matrix} 0 & 1 \\ -1 & 0 \end{matrix} \right) \\ (AB)^{-1} & = \left( \begin{matrix} 0 & 1 \\ -1 & 0 \end{matrix} \right)^{-1} \\ B^{-1}. A^{-1} & = \frac{1}{0.0-(-1).1} \left( \begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix} \right) \\ B^{-1}. A^{-1} & = \frac{1}{1} \left( \begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix} \right) \\ B^{-1}. A^{-1} & = \left( \begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix} \right) \end{align}
\spadesuit \, Mengalikan bentuk CB dan ( B^{-1} A^{-1} )
\begin{align} (CB).(B^{-1}. A^{-1}) & = \left( \begin{matrix} 1 & 0 \\ 0 & -1 \end{matrix} \right) . \left( \begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix} \right) \\ C.(B.B^{-1}) . A^{-1} & = \left( \begin{matrix} 0 & -1 \\ -1 & 0 \end{matrix} \right) \\ C.I. A^{-1} & = \left( \begin{matrix} 0 & -1 \\ -1 & 0 \end{matrix} \right) \\ C A^{-1} & = \left( \begin{matrix} 0 & -1 \\ -1 & 0 \end{matrix} \right) \end{align}
Jadi, nilai C A^{-1} = \left( \begin{matrix} 0 & -1 \\ -1 & 0 \end{matrix} \right) . \heartsuit
A = \left( \begin{matrix} a & b \\ c & d \end{matrix} \right) \rightarrow A^{-1} = \frac{1}{ad-bc} \left( \begin{matrix} d & -b \\ -c & a \end{matrix} \right)
Sifat - sifat pada matriks :
A.A^{-1} = A^{-1} . A = I
A.I = I.A = A
(AB)^{-1} = B^{-1}. A^{-1}
\spadesuit \, inverskan bentuk AB
\begin{align} AB & = \left( \begin{matrix} 0 & 1 \\ -1 & 0 \end{matrix} \right) \\ (AB)^{-1} & = \left( \begin{matrix} 0 & 1 \\ -1 & 0 \end{matrix} \right)^{-1} \\ B^{-1}. A^{-1} & = \frac{1}{0.0-(-1).1} \left( \begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix} \right) \\ B^{-1}. A^{-1} & = \frac{1}{1} \left( \begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix} \right) \\ B^{-1}. A^{-1} & = \left( \begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix} \right) \end{align}
\spadesuit \, Mengalikan bentuk CB dan ( B^{-1} A^{-1} )
\begin{align} (CB).(B^{-1}. A^{-1}) & = \left( \begin{matrix} 1 & 0 \\ 0 & -1 \end{matrix} \right) . \left( \begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix} \right) \\ C.(B.B^{-1}) . A^{-1} & = \left( \begin{matrix} 0 & -1 \\ -1 & 0 \end{matrix} \right) \\ C.I. A^{-1} & = \left( \begin{matrix} 0 & -1 \\ -1 & 0 \end{matrix} \right) \\ C A^{-1} & = \left( \begin{matrix} 0 & -1 \\ -1 & 0 \end{matrix} \right) \end{align}
Jadi, nilai C A^{-1} = \left( \begin{matrix} 0 & -1 \\ -1 & 0 \end{matrix} \right) . \heartsuit
Nomor 15
Diketahui \int f(x)dx = ax^2 + bx + c \, dan a \neq 0 \, . Jika a, \, f(a), \, 2b \, merupakan barisan aritmetika,
dan f(b) = 6 , maka \int \limits_0^1 f(x) dx = ....
\clubsuit \, Konsep dasar :
f(x) = [\int f(x) dx]^\prime \, (turunan dari integralnya)
\clubsuit \, Menentukan fungsi f(x)
\begin{align} \int f(x)dx & = ax^2 + bx + c \\ f(x) & = [\int f(x) dx]^\prime \, \, \text{(turunannya)} \\ f(x) & = 2ax + b \\ x=a \rightarrow f(a) & = 2a.a + b = 2a^2 + b \end{align}
\clubsuit \, Barisan aritmetika : a, \, f(a), \, 2b \,
Selisih sama :
\begin{align} f(a) - a & = 2b - f(a) \\ 2f(a) & = a + 2b \\ 2(2a^2 + b) & = a + 2b \\ 4a^2 - a & = 0 \\ a(4a-1) & = 0 \\ a = 0 \vee a & = \frac{1}{4} \end{align}
Karena a \neq 0, \, maka a = \frac{1}{4} \, yang memenuhi.
sehingga : f(x) = 2ax + b = 2. \frac{1}{4}x + b \rightarrow f(x) = \frac{1}{2}x + b
\clubsuit \, Menentukan nilai b dengan f(b) = 6
\begin{align} f(x) & = \frac{1}{2}x + b \\ f(b) & = 6 \\ \frac{1}{2}b + b & = 6 \\ b & = 4 \end{align}
Sehingga f(x) = \frac{1}{2}x + b \rightarrow f(x) = \frac{1}{2}x + 4
\clubsuit \, Menentukan integralnya
\begin{align} \int \limits_0^1 f(x) dx & = \int \limits_0^1 (\frac{1}{2}x + 4) dx \\ & = (\frac{1}{4}x^2 + 4x )_0^1 \\ & = (\frac{1}{4}. 1^2 + 4.1 ) - (0 ) & = \frac{17}{4} \end{align}
Jadi, nilai \int \limits_0^1 f(x) dx = \frac{17}{4} . \heartsuit
f(x) = [\int f(x) dx]^\prime \, (turunan dari integralnya)
\clubsuit \, Menentukan fungsi f(x)
\begin{align} \int f(x)dx & = ax^2 + bx + c \\ f(x) & = [\int f(x) dx]^\prime \, \, \text{(turunannya)} \\ f(x) & = 2ax + b \\ x=a \rightarrow f(a) & = 2a.a + b = 2a^2 + b \end{align}
\clubsuit \, Barisan aritmetika : a, \, f(a), \, 2b \,
Selisih sama :
\begin{align} f(a) - a & = 2b - f(a) \\ 2f(a) & = a + 2b \\ 2(2a^2 + b) & = a + 2b \\ 4a^2 - a & = 0 \\ a(4a-1) & = 0 \\ a = 0 \vee a & = \frac{1}{4} \end{align}
Karena a \neq 0, \, maka a = \frac{1}{4} \, yang memenuhi.
sehingga : f(x) = 2ax + b = 2. \frac{1}{4}x + b \rightarrow f(x) = \frac{1}{2}x + b
\clubsuit \, Menentukan nilai b dengan f(b) = 6
\begin{align} f(x) & = \frac{1}{2}x + b \\ f(b) & = 6 \\ \frac{1}{2}b + b & = 6 \\ b & = 4 \end{align}
Sehingga f(x) = \frac{1}{2}x + b \rightarrow f(x) = \frac{1}{2}x + 4
\clubsuit \, Menentukan integralnya
\begin{align} \int \limits_0^1 f(x) dx & = \int \limits_0^1 (\frac{1}{2}x + 4) dx \\ & = (\frac{1}{4}x^2 + 4x )_0^1 \\ & = (\frac{1}{4}. 1^2 + 4.1 ) - (0 ) & = \frac{17}{4} \end{align}
Jadi, nilai \int \limits_0^1 f(x) dx = \frac{17}{4} . \heartsuit
Tidak ada komentar:
Posting Komentar
Catatan: Hanya anggota dari blog ini yang dapat mengirim komentar.